鹤壁铝合金牺牲阳极的主要用途
发布时间:
2023-07-27 00:36
鹤壁铝合金牺牲阳极的主要用途
铝是自钝化金属。表面易形成 氧化铝薄膜,使其电位升高 ,降低阳极活性,因而不适合直接用作牺牲阳极。 但是,人们通过研究和有效的合金化手段,改变铝表面 钝化膜的成分和性质,促使膜的溶解和脱落,使铝阳极具有足够的驱动电位和稳定的电流输出,从此铝合金迅速发展起来成为新型牺牲阳极材料#铝合金牺牲阳极厂家#
铝合金牺牲阳极
铝合金牺牲阳极目前已在各种场合广泛应用。目前,国内外铝合金牺 牲阳极主要使用于下列几个方面:
船舶 ,对于小型船舶来说,以铝合金或锌合金牺牲阳极进行保护为主
港湾设施,如码头,栈桥的钢桩,浮筒,浮船坞及人工岛等广泛采用牺牲阳极保护 。目前以铝合金牺牲阳极保护为多。
铝合金牺牲阳极
海上钻井与采油平台,近海石油工业发展,需要用海底管道输送从海底开采出来的高温原油和天然气,这些管道周围的海泥也处于高温环境中,产生严重的局部腐蚀,且缩颈现象严重。铝合金阳极与镁合金相结合取得了更好的成绩,复合阳极可能会是牺牲阳极发展的另一个方向。
施工现场图片
综上所述。由于铝合金阳极的电流量大,比重小,制造施工方便,材料来源充足,电位负及电流效率较 高等一系列优点,各国采用铝合金牺牲阳极的阴极保护日趋广泛。
金属腐蚀的分类 有多种分类方法。按腐蚀过程的分,主要有化学腐蚀和电化学腐蚀。化学腐蚀是金属和环境介质直接发生化学作用而产生的损坏,在腐蚀过程中没有电流产生。例如金属在高温的空气中或氯气中的腐蚀,非电解质对金属的腐蚀等。引起金属化学腐蚀的介质不能导电。电化学腐蚀是金属在电解质溶液中发生电化学作用而引起的损坏,在腐蚀过程中有电流产生。引起电化学腐蚀的介质导电。例如,金属在酸、碱、盐、土壤、海水等介质中的腐蚀。电化学腐蚀与化学腐蚀的主要区别在于它可以分解为两个相互独立而又同时进行的阴过程和阳过程,而化学腐蚀没有这个特点。电化学腐蚀比化学腐蚀更为常见和普遍。
鹤壁铝合金牺牲阳极的主要用途
按金属腐蚀破坏的形态和腐蚀区的分布,分为全面腐蚀和部腐蚀。全面腐蚀,是指腐蚀分布于整个金属的表面。全面腐蚀有各处的腐蚀程度相同的均匀腐蚀;也有不同腐蚀区腐蚀程度不同的非均匀腐蚀。在用酸洗液清洗钢铁、铝设备时发生的腐蚀一般属于均匀腐蚀。而腐蚀主要集中在金属表面的某些区域称为部腐蚀。尽管此种腐蚀的腐蚀量不大,但是由于其部腐蚀速度很大,可造成设备的严重破坏,甚至爆炸,因此,其危害更大。金属在不同的环境条件下可以发生不同的部腐蚀。例如孔蚀、缝隙腐蚀、应力腐蚀、晶间腐蚀、磨损腐蚀等。还有按腐蚀的环境条件把腐蚀分为高温腐蚀和常温腐蚀;干腐蚀和湿腐蚀等
鹤壁铝合金牺牲阳极的主要用途
NACE RP 0169 建议“在通电的情况下,埋地钢铁结构小保护电位为-0.85V CSE或更负, 在有硫酸盐还原菌存在的情况下,小保护电位为-0.95V CSE,该电位不含土壤中电压降(IR降)”。实际测量时,应根据瞬时断电电位进行判断。目前流行的通电电位测量方法简便易行,但对测量中IR降的含量没有给予重视。其后果是很多认为阴保护良好的管道发生腐蚀穿孔。这方面的教训是很多的。如:某气田南干线,认为阴保护良好,但实际内检测发现腐蚀深度在壁厚的10-19% 的点多达410处; 个别位置的点蚀深度达到50%。 进行断电电位测量发现,很多点保护电位(断电电位)没有达到-0.85V CSE。有效的方法是实际测量几点的IR降,保护电位按0.85 + IR 降来确定。IR 降可以通过通电电位减去瞬时断电电位来获得,也可以用瞬时通电电位减去结构自然电位来获得。
鹤壁铝合金牺牲阳极的主要用途